From Ancient Practices to Modern Science: A Review on the Synthesis and Characterization of Ayurvedic Bhasmas

Nilima Rajurkar*, Shailesh Kantak, Babita Kale Department of Chemistry, Savitribai Phule Pune University, Pune 411007 *Email: rnilima@rediffmail.com

Received: 7.7.2024, Revised: 19.7.2024, Accepted: 21.7.2024

Abstract

Ayurvedic Bhasma, an ancient form of Indian traditional medicine, represents a unique class of herbo-mineral formulations prepared through a meticulous process involving calcination. This review provides a comprehensive synthesis and characterization of Ayurvedic Bhasmas, focusing on its preparation methods, physicochemical properties, and characterization. The synthesis of Bhasma involves a series of Shodhana (purification), Marana (incineration), and Bhavana (soaking and drying) processes, each contributing to the transformation of raw minerals and herbs into bioavailable nanoparticles with enhanced efficacy and reduced toxicity. The review delves into the intricate processes involved in the production of various bhasmas, prepared in our laboratory as well as reports by other researchers. It also highlights modern scientific techniques used to characterize these formulations, including XRD, SEM, TEM, FTIR, AAS, NAA, DLS etc. These techniques reveal the nanoscale size, crystalline structure, and elemental composition of bhasmas, providing insights into their therapeutic potential and safety profiles.

Key words: Ayurvedic bhasma, synthesis, characterization, modern analytical techniques

1. Ayurveda and Ayurvedic Bhasma

Ayurveda, one of the oldest systems of medicine, encompasses a rich repository of traditional knowledge. Regarded as the "science of life," it has been dedicated to the healthcare of living beings since ancient times. Ayurvedic remedies, typically derived from natural sources, are employed to treat a wide array of ailments^{1,2}. Defined as a medical science focused on maintaining human health, Ayurveda offers cures and preventive measures for numerous health

conditions. Ayurvedic formulations are composed of herbal, mineral/metal, and animal substances, which are meticulously processed to achieve therapeutic efficacy³.

Ayurvedic Bhasmas stand as a cornerstone of Ayurvedic therapy, integral to the holistic healing tradition. Revered for their therapeutic properties, these finely powdered minerals and metals are employed extensively to address a myriad of ailments. Their efficacy and versatility ensure that Bhasmas remain a 'mainstay' in the realm of Ayurvedic medicine, continuously contributing to its enduring legacy.

The historical roots of bhasmas can be traced back to ancient Ayurvedic texts such as the *Charaka Samhita* and *Sushruta Samhita*, which detail the preparation methods and therapeutic applications of these substances. These texts highlight the extensive use of Bhasmas in treating a myriad of ailments ranging from digestive disorders to chronic diseases and mental health issues ^{4,5}.

Modern scientific research has started to validate many of the traditional claims associated with bhasmas Studies indicate that these preparations undergo complex chemical transformations during the incineration process, resulting in nanoparticles that possess enhanced bioavailability and therapeutic properties. For instance, swarna bhasma (gold ash) has shown promise in boosting immunity and improving cognitive functions⁶.

The preparation of bhasma is a meticulous and multi-step process, ensuring the removal of toxic elements and enhancing the medicinal attributes of the materials used. This involves repeated calcination and treatment with herbal juices, which not only detoxifies but also imbues the final product with beneficial organic compounds. The resultant ash is believed to balance the tridoshas (Vata, Pitta, and Kapha) and align the body's energies, thereby promoting overall health and well-being. These bhasmas are prepared from inorganic compounds or elements, which undergo several treatments to convert them into bio-compatible forms. During synthesis, various toxic materials are removed to minimize or eliminate any adverse effects on the body. The main advantages of bhasmas are: They are easily acceptable, palatable, fast-acting and effective in smaller dosages. They have longer shelf life without losing potency and no side effects

Improperly prepared bhasmas can produce severe adverse effects, including heavy metal poisoning, hepatotoxicity, renal toxicity, and neurotoxicity, which can sometimes be fatal. Some commercially available bhasmas have been found to contain mercury and arsenic, leading to their ban in foreign countries. Therefore, quality control, safety evaluation, and

standardization of bhasmas are of utmost importance. This can be achieved by characterizing bhasmas at various stages of preparation.

Historically, Ayurvedic physicians prepared bhasmas according to their needs. However, with the growing popularity of Ayurvedic medicines, the number of Ayurvedic pharmacies is rapidly increasing, leading to large-scale production of bhasmas in pharmaceutical houses. This commercialization has introduced several challenges, as new manufacturing appliances have not been standardized for quality. Consequently, the diverse synthetic procedures have made it difficult to determine whether bhasmas produced by different methods are identical in structure and properties, due to the lack of systematic studies from this perspective.

This review provides a comprehensive overview of research conducted on Ayurvedic Bhasmas over an extended period.

2. Synthesis of ayurvedic bhasma

Synthesis of bhasma involves number of steps. These are described below

2.1 Bhasmavidhi (The Process of Preparing Bhasma)⁷

Shodhana (**Purification**): There are two types: samanya shodhana(common purification) and Vishesh Shodhana (special purification) In this process different materials used are: Sesame oil, buttermilk, cow urine, kanji, horse gram decoction, lemon juice. This treatment leads to removal of physical and chemical impurities, increased bioavailability, reduced hardness, increased brittleness and makes the material suitable for marana process

Marana (**Incineration**): Mercury, arsenic, sulfur and herbal products are used during marana process. It leads to alteration in structure, composition, and color, Transformation from original inorganic form to an organic, bio-acceptable form.

Chalan (Stirring): Stirring is done using an iron rod or the stem/bark of dried plants

Dhavan (Washing): In order to remove remnants of herbal products washing is done with water

Galan (Filtration): Soluble impurities are removed by filtration.

Niruthana :(absence of alloy) It is incineration of the prepared Bhasma to confirm completion of Marana.

Putana process (Heating): : The Puta is the ancient unit of heat. The obtained product is heated in fire leading to formation of bhasma.

Mardana (**Trituration**): Triturating the product with other substances converts it into micronano particles.

Bhavana (Soaking and Drying): The product is soaked in different juices and dried in a shaded place.

Amrutikaran (Detoxification): For this purpose, cow ghee and aloe vera juice are used. This will lead to removal of toxic impurities and enhancement in Bhasma purity

Sandharan (Storage): Its purpose is to maintain good quality and preserve the properties of Bhasma

Four important steps in synthesis of Bhasmas are depicted in Fig.1

2.1.1 Traditional Heating Method

Puta System: Puta is a specialized heating system used for the incineration of metals and minerals. The choice of puta depends on the type of material being processed. Different putas are used based on the quantity of fuel required. Examples mentioned in the literature include Mahaputa, Gajaputa, Kukkutputa, Varahputa, and Kapotputa. Each type of puta has a different diameter, tailored to its specific use. The intensity of heat, mode of temperature, and duration of heating vary depending on the type of puta. Putas are selected and applied for the Maran process based on the heat resistance of the material.

In the present days instead of putas electric muffle furnace is used for heating.

2.2Ancient Ayurvedic Methods of Analysis

Classical texts have established the following parameters to ensure the proper processing of bhasma.

2.2.1 Physical Characterization:

- a. **Varna** (**Color**): Each bhasma has a specific color, typically white, pale, or red, depending on the initial material used. Any alteration in color indicates improper preparation.
- b. **Nisvadutam (Tasteless):** A properly prepared bhasma is tasteless when a small amount is placed on the tongue.
- c. **Nishchandratvam (Lusterless):** Bhasma must be lusterless before therapeutic use. If observed in bright sunlight, the presence of luster indicates the need for further incineration.
- d. **Varitara** (ability to float): Bhasma should be light enough to float on the surface of stagnant water. Properly incinerated bhasma will float.

- e. Unnam Test (Floating Test with Rice Grain): This test further assesses the varitara property. A grain of rice is placed on the floating layer of bhasma. If the grain remains afloat, the bhasma is properly prepared.
- f. **Rekhapurnatvam (Fineness):** Bhasma should be finely powdered for easy absorption and assimilation. When rubbed between the thumb and index finger, it should fill the lines and crevices of the skin.
- g. Slakshnatvam (non-rough/smooth nature): The tactile sensation of bhasma, when touched with fingertips, should not cause irritation, ensuring it is safe for the gastrointestinal tract's mucous membrane.
- h. **Sukshmatva (Fineness):** This characteristic, indicated by the varitara and rekhapurnatvam tests, ensures that bhasma is fine enough for proper body absorption.
- i. **Anjan Sannibha (like kajal):** Properly prepared bhasma should be smooth and non-irritating to the mucous membrane.
- j. Avami: Bhasma should not induce nausea upon administration.

2.2.2 Chemical Characterization

a. Apurnabhavta

Apurnabhavta refers to the incapability of bhasma to retain its original metallic form. In this test, bhasma is mixed with an equal quantity of mitrapanchaka (seeds of Abrus precatorius, ghee, jaggery, borax, and honey). This mixture is sealed in a sharav samputa (earthen pot) and heated. The presence of lustrous particles indicates free metal, which becomes inactive after incineration.

b. Niruttha

Niruttha tests the inability of bhasma to regain its metallic form. Bhasma is mixed with a fixed weight of a silver leaf, placed in an earthen pot (sharav samputa), and heated. After cooling, the silver is weighed. An increase in the weight of the silver indicates improperly prepared Bhasma. These tests are specific to particular bhasmas. The process is not considered complete until these standards are met.

2.2.3 Methods of Physicochemical Analysis:

Delving into the essence of natural substances and their inherent properties requires precision and diligence. In this domain, the Ash Value serves as a critical measure, assessing the quality and purity of raw drugs while revealing their unique identities. Composed of inorganic elements such as phosphates, carbonates, and silicates of sodium, potassium, magnesium, and calcium, ash represents a distinctive quantitative profile for each botanical sample, facilitating precise standardization protocols.

The total ash content reflects the transformation process, where carbon and organic matter convert into ash at temperatures above 450°C. This ash contains minerals like carbonates, phosphates, silicates, and silica, providing insights into acid insolubility and water solubility—important aspects of botanical composition.

Examining further, Acid Insoluble Ash Content refines the total ash through interaction with dilute hydrochloric acid to separate water-soluble ash. This purification process not only enhances botanical analysis but also sheds light on the complex relationship between soluble salts and aqueous environments.

The Namburi Phase Spot Test (NPST)⁸, developed by Dr. Namburi Hanumantha Rao in 1970 and recognized by CCRAS, New Delhi, is an innovative method for assessing Bhasma quality. NPST utilizes chemical reactions on specialized papers to create a vivid display of color changes, capturing the dynamic nature of chemical interactions over time. Its precise measurement of sensitivity across different time intervals makes it a valuable tool for ensuring the quality of Bhasmas.

Bio-accessibility, a key factor in nutritional effectiveness, explores how nutrients are utilized within a sample, influenced by the complexities of the gastrointestinal system. Both external factors, such as the food matrix, and internal factors, like metabolic pathways, shape bio-accessibility, intertwining dietary details with physiological responses.

When it comes to estimation methods, In-vivo techniques, though time-consuming and expensive, reveal elemental bioavailability through detailed radiotracer studies, with the downside of exposure to ionizing radiation. In contrast, In-vitro techniques provide speed and cost-efficiency by mimicking digestive conditions to identify soluble and dialyzable products, offering a practical, albeit less precise, alternative to live studies. These in-vitro methods are crucial for unlocking dietary potential and pinpointing nutrient-rich supplements, demonstrating an effectiveness comparable to human and animal studies.

2.3 Modern Analytical Techniques for Characterization of Bhasma

The characterization of bhasmas involves a multidisciplinary approach, encompassing physical, chemical, and biological evaluations. This comprehensive characterization is essential for ensuring the quality, efficacy, and safety of bhasmas, thereby upholding the therapeutic principles of Ayurveda. Advances in analytical techniques continue to enhance our understanding of bhasmas, bridging traditional knowledge with modern scientific insights.

In order to characterize the bhasmas number of modern analytical techniques are available which helps to understand nature, structure, particle size, elemental content of bhasma as well as uniformity and distribution of particles in bhasmas. These are recorded in Table 2 ⁹⁻¹².

2.4 Synthesis/Analysis/ Characterization of Bhasmas:

A literature review reveals extensive research on commercially available bhasmas, though fewer studies focus on their synthesis and characterization. In the early 1930s, Chopra and colleagues¹³⁻¹⁷ analyzed the main constituents of bhasmas such as iron, tin, calcium, gold, and silver using classical chemical methods. Kumar et al.^{18,19} conducted elemental analysis of bhasmas using instrumental neutron activation, identifying eighteen elements. Garg et al.²⁰ employed PIXE for trace element analysis to evaluate biocompatibility in various bhasmas. Sondhi et al.^{21,22} utilized flame photometry, AAS, and ICPAES techniques to analyze bhasmas and their pharmacological effects. Krishnamurthy et al.²³ examined Lauha bhasmas from different manufacturers to understand their composition and structural characteristics. Krishnamachary et al.²⁴ studied commercially available Lauha bhasma, analyzing its morphology, structure, and chemical properties using modern techniques.

Recent advancements in analytical methods, such as spectrophotometry, flame photometry, AAS, ICP-AES, PIXE, and X-ray diffraction, have facilitated the trace elemental analysis of bhasmas. Lalla et al.²⁵ prepared, characterized, and analyzed Shankh bhasma, investigating its antacid activity. Mitra et al.²⁶ used AAS to identify twelve elements in Swarna bhasma. Prajapati et al.²⁷ assessed the safety and toxicity of tamra bhasma, lauha bhasma, and yashada bhasma, confirming no serious adverse effects. Such studies provide valuable scientific evidence to Ayurvedic practitioners and pharmaceutical R&D for better standardization of these traditional medicines.

Several researchers have synthesized bhasmas and analyzed them with modern techniques. Kumari etal.²⁸ discussed the use of modern analytical techniques such as XRD,XRF,SEM,TEM,FTIR in characterization of bhasmas along with principles of these techniques. Wijenayake et al.²⁹ explored the chemical and pharmacological properties of mica ash (Abhrak bhasma), noting structural changes during preparation. Wadekar et al.³⁰ synthesized and characterized tamra bhasma, confirming its composition matched with standard copper oxide. Gawate et al.³¹ reported physicochemical characteristics of three different brands of mandur bhasma and studied hepatoprotective activity of these. Nagarajan et al.³² characterized lead-based Naga bhasma. Pattanaik et al.³³ studied the toxicology and

antioxidant properties of tamra bhasma, showing its efficacy and safety. Jagtap et al.³⁴ evaluated tamra bhasma's quality control parameters, finding significant copper content. Gupta et al.³⁵ analyzed Yashad bhasma, revealing 98.20% zinc content. Sonkar et al.³⁶ used NPST to analyze Mandur bhasma. Pyrgiotakis et al.³⁷ compared bhasma-treated and untreated cells using Raman Spectroscopy, observing significant changes in DNA/RNA and protein molecules in treated cells.

Vasant et al.³⁸ analyzed Talaka and Naga bhasmas, identifying As₂S₃ and PbS as major constituents. They also detected minor elements like Ca, Mg, As, Sb, Al, and Fe. Dixit and Shivhare³⁹ employed modern instrumental techniques to analyze pearl and Cowrie bhasmas for minor constituents such as Mg, Ca, Fe, and Zn.

In the modern era, numerous studies have utilized advanced techniques like XRD, FTIR, AAS, ICPOES, SEM, TEM, DLS, and BET to analyze various bhasmas, including gold, silver, iron, copper, and mica. Kar et.al.⁴⁰ reported synthesis and biological activity of Rajat bhasma. Formation of nanoparticles in this bhasma caused an increase in antioxidant and antimicrobial activity. Patil and Wele⁴¹ reviewed the therapeutic potential of Swarna bhasma. Recently Garg and Kumar⁴² reviewed analysis of 17 Bhasmas for their elemental content, particle distribution and toxicity. Ashvini and Kerur⁴³ analysed abhraka, mandur and godanti bhasmas of four different brands for more than 10 elements by AAS. Pandit et al.⁴⁴ evaluated the chemical and pharmacological properties of iron bhasmas, using AAS to determine 12 elements in addition to the main constituent, Fe. Buwa etal.⁴⁵ studied hepatoprotective action of abhrak bhasma in albino rats against hepatitis induced by CCl₄ while Pandit etal⁴⁶ demonstrated shankha bhasma's anti-ulcer effects in rats.

Kantak et al.⁴⁷ analyzed copper bhasma during each stage of preparation using instrumental neutron activation analysis, finding copper concentrations of 92.89% and 59.79% after vishesh shodhana and marana, respectively. Bhowmick et al. ⁴⁸ conducted physicochemical characterization of Jasada bhasma, identifying zinc as a major element next to oxygen and demonstrating the presence of nanoparticles. Singh⁴⁹ reported formation of nanoparticles of gold (size 45 nm) in the synthesized swarna bhasma.

Research has demonstrated that metals and minerals used in Ayurveda, once properly incinerated as bhasmas, can have therapeutic benefits without significant toxicity. Singh et al.⁵⁰ conducted histopathological studies on Naga bhasma, confirming its safety in rats. Wadekar

37

et al.³⁰ studied therapeutic properties of synthesized Tamra bhasma. Brown et al.⁵¹ characterized swarna bhasma, showing it as globular gold particles averaging 56-57 nm. These nanoparticles were found to be more effective in treating arthritis in rat models than sodium aurothiomalate.

In exploring the healthcare applications of nanomaterials, it becomes apparent that the therapeutic properties of metal-based Ayurvedic compositions may be inherently tied to their nanoscale characteristics. To harmonize the wisdom of Vedic science with contemporary scientific understanding, comprehensive physico-chemical investigations were undertaken on swarna bhasma, roupya bhasma and jasad bhasma by Amalnerkar⁵². His investigations adhered rigorously to traditional Ayurvedic preparation methods and he employed advanced analytical tools to unravel their complexities. State-of-the-art techniques such as XRD, FESEM, X-ray Photoelectron Spectroscopy (XPS), Field-Emission Transmission Electron Microscopy (FETEM), High-Resolution TEM (HRTEM), and Scanning Transmission Electron Microscopy (STEM) with High Angle Annular Dark-Field (HAADF) and Elemental Mapping were utilized. These methodologies allowed for a detailed examination of the structure, texture, morphology, and elemental/chemical composition and distribution within these metal-based formulations, thereby bridging the gap between ancient Ayurvedic knowledge and modern scientific inquiry.

Crafted from metallic raw materials, bhasmas may face challenges in complete absorption for circulation within the body. Thus, a thorough pharmacokinetic study of these bhasmas becomes crucial to accurately prescribe the appropriate dosage. Among these investigations, determining bio-accessibility stands out as a key parameter. In-vivo determination of bio-accessibility is expensive and laborious while in-vitro ones are rapid and relatively inexpensive Kantak and Rajurkar⁵³ reported bio-accessibility of abhrak naga and tamra bhasma. Tamra bhasma mixed with different anupana [material (honey and piper longum mixture, ghee and fermented juice of Aloe-vera) which increases palatibility and improves absorption] showed more bio-accessibility as compared with tamra bhasma without anupana.

In our laboratory, extensive studies have been carried out on bhasmas which comprises of synthesis and analysis of different bhasmas using traditional and modern analytical techniques. All the bhasmas were tested by traditional methos which indicated proper formation of bhasmas. Then these bhasmas were characterized by modern analytical techniques. Characterization of these bhasmas by FTIR revealed organometallic nature of the bhasmas showing several functional groups. Other important findings are listed in Table 2 along with

method of preparation and techniques applied. Some representative characterized bhasmas are shown in Figs. 2 and 3⁵⁴.Fig. 2 presents XRD of Pittal Bhasma which clearly indicated the presence of CuO with granular appearance and polycrystalline nature. SEM of Pittal bhasma is shown in Fig. 3 Examination of this figure Shows particles with change in morphology. The Bhasma prepared by Traditional Method of heating are bigger in size than that prepared by EMF heating. During synthesis of rajat bhasma, hartal and gandhaka were used in marana process. The obtained product after this process, showed presence of As. However, after Amrutikaran with lime extract this was totally removed as evidenced by EDX spectrum⁵⁹. Similarly in case of lauha bhasma synthesis, presence of Hg after marana process, done with cinnabar, was removed by amrutikaran with aloe vera extract⁵⁸.

3. Conclusion:

In summary, the synthesis and analysis of bhasma, a cornerstone of Ayurvedic medicine, bridges the rich heritage of traditional practices with the precision of modern scientific techniques. The synthesis of various bhasmas follows meticulously crafted traditional protocols, ensuring the transformation of raw materials into bioactive compounds through processes such as shodhana, marana, and amritikarana. These time-honored methods, passed down through generations, are crucial for maintaining the therapeutic efficacy and safety of bhasmas.

Characterization of bhasmas using traditional methods, including organoleptic properties, classical tests, and Ayurvedic parameters, provides an initial assessment of their quality and potency. However, integrating modern analytical techniques such as FTIR, XRD, SEM, AAS, ICP-MS enhances the understanding of their physicochemical properties and elemental composition. The amalgamation of traditional knowledge with modern analytical methodologies not only validates the ancient practices but also opens new avenues for standardization, quality control, and scientific validation of bhasmas. This comprehensive approach ensures that bhasmas can be safely and effectively integrated into contemporary therapeutic regimes, fostering global acceptance and utilization. Continued research and development in this field will further elucidate the mechanisms of action of bhasmas, optimizing their therapeutic potential and reinforcing their status as invaluable components of Ayurvedic medicine.

This review underscores the significance of integrating traditional knowledge with modern scientific validation to fully harness the therapeutic potential of Ayurvedic Bhasma. By

bridging the gap between ancient practices and contemporary science, we can pave the way for the development of novel, effective, and safe therapeutic agents derived from traditional medicines.

Figures:

General procedure for preparation of Bhasma

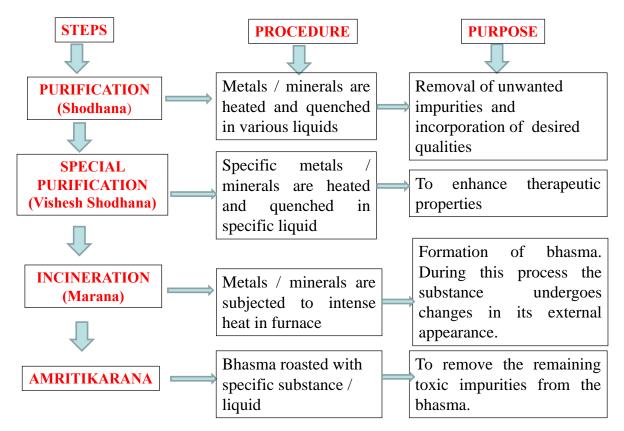
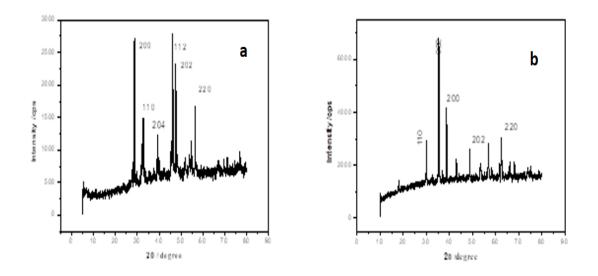
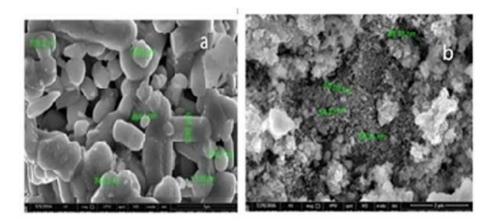




Fig. 1 General procedure for synthesis of Bhasma

Fig.2 XRD spectra of Pittal Bhasma prepared by a) Traditional method of heating b) EMF heating

Fig.3 SEM Micrograph of Pittal Bhasma a) prepared by traditional method of heating b) prepared by EMF heating

Tables:

Table1 : Modern analytical techniques for analysis of bhasmas

Technique	Use
Fourier Transform Infrared Spectroscopy	Identifies characteristic functional groups and
(FTIR)	bonds present in the sample
Scanning Electron Microscopy (SEM)	Gives information about sample's surface
	topography and composition
Energy Dispersive X-ray Analysis (EDX)	It provides elemental analysis of areas as small
	as nanometers in diameter. EDX can determine
	elemental composition or map the lateral
	distribution of elements.
Transmission Electron Microscopy (TEM)	It directly measures nanoparticle size, grain size,
	size distribution and morphology
X-ray Diffractometry (XRD)	It identifies and characterizes unknown
	crystalline materials and crystallographic
	structure
Dynamic Light Scattering (DLS)	It measures particle size in the submicron region
Thermogravimetric Analysis (TGA)	It measures changes in physical and chemical
	properties as a function of temperature
Differential Thermal Analysis (DTA)	It provides data on physical and chemical
	changes
Inductively Coupled Plasma-Atomic	It is used for determining metal and non-metal
Emission Spectroscopy (ICP-AES)	elements in the sample
Atomic Absorption Spectroscopy (AAS)	It determines elemental concentration in the
	sample
Neutron Activation Analysis (NAA)	Useful in elemental analysis of the sample
Particle Size Distribution (PSD)	It measures particle size
	1
Brunauer Emmett Teller (BET) analysis	It helps to determine surface area of the sample

Bhasma and	Use	Synthesis method	Analytical	Important findings
base			methods	
material				
used				
Mandur ⁵⁵	Generally	Shodhana with	FTIR,	The Bhasma contains iron
It is iron	used in the	Butter milk, Cow	SEM -	oxide in the form of Fe_2O_3
based	treatment of	urine, Kanji, Horse	EDAX,	and Fe ₃ O ₄
bhasma.	anemia, skin	gram decoction,	XRD	EDAX and SEM image
	diseases and	Triphala decoction		clearly shows the change in
	in poor	Bhavana with		morphology and decrease
	digestion	Triphala decoction		in particle size of the final
	treatment.	Marana with		product
		Ardhgaja puta as		
		well as Electric		
		Muffle Furnace		
		(EMF)		
Pittal ⁵⁴	Generally	Shodhana with	XRD,	XRD shows the presence
It is Copper	used in the	Butter milk, Cow	FTIR,	of CuO and granular
and Zinc	treatment of	urine, Kanji, Horse	SEM,	appearance and
based	Liver	gram decoction,	EDAX,	polycrystalline nature.
bhasma.	disease,	Vitex nigundo and	TEM and	Particle size of Bhasma
	anemia,	Curcuma longa linn	DLS.	prepared by traditional
	Skin	Bhavana with		method 300-750 nm while
	diseases.	Calotropis gigantean		that prepared by using
		Marana with		electric muffle furnace has
		Ardhagaja puta as		250-750 nm
		well as EMF		
	D (11		VDD	VDD 1 (1
Yashad ⁵⁶	Preferably	Shodhana with Cow	XRD,	XRD shows the presence

Table 2 Synthesis and analysis of different bhasmas

It is Zinc	Diabetes	Jarana with Azardica	SEM,	TEM shows the
based	related	indica	EDAX,	polycrystalline nature.
bhasma.	diseases	Bhavana with	TEM and	DLS studies reveal that
		Orpiment purified	DLS.	Bhasma prepared by EMF
		with lime water		heating has 70 %
		Marana with Kukkut		nanoparticles in the range
		Puta as well as EMF		of 250-750nm While
				Traditional Method of
				Heating shows 200-700nm
				range.
Vanga ⁵⁷	Widely used	Shodhana with	XRD,	The study confirmed the
It is Tin based	with	Sesame oil, Butter	FTIR,	formation of
bhasma	herbominer	milk,Cow urine,	SEM,	organometallic compound
	al	Kanji, Horse gram	EDAX,	SnO ₂
	formulation	decoction	TEM and	The Particle size of
	in Ayurveda	Bhavana with	DLS.	Bhasma Prepared by
	especially	Tamerandus indica		traditional method of
	for the	lin		heating is 150-300 nm
	disease	Jarana with Aole		range and of that prepared
	related to	veraTourn lin		by using electric muffle
	gastrointesti	Marana with		furnace has 50-100 nm
	nal tract and	Kukkuta puta as well		range.
	genitor	as EMF		
	urinary			
	system.			

Lauha ⁵⁸	It is used in	Shodhana with	FTIR,	Formation of
It is an iron	all chronic	sesame oil, butter	XRD,	rhombohedral α-Fe ₂ O ₃
based herbo-	diseases and	milk, cow urine,	TGA/	(hematite). amount of free
metallic	iron	kanji, decoction of	DTA,	iron is insignificant in the
preparation	deficiency	horse gram	SEM,	bhasma.
and is the	anemia.	Vishesh shodhana	PSD,	The Particle size of the
main		with Decoction of	EDX, BET	bhasma ranged between
constituents		Triphala Kwatha		50-200nm
of iron		Marana with Extract		Amrutikarna process
containing		of Aloe- Vera, Cow's		removed Hg from the
formulations.		Urine, Decoction of		bhsama.
		Triphala Kwatha,		The specific surface area of
		Amritikaran with		the synthesized bhasma
		aloe vera extract		was found to be $12.55 \text{m}^2/\text{g}$.
Rajat ⁵⁹	Used in eye	Shodhana with	FTIR,	XRD analysis revealed α-
It is silver	disorders,	Sesame Oil, Butter	XRD,	Ag ₂ S (monoclinic) phase
based bhasma	cough,	Milk ,Cow's urine,	TGA/	structure of bhasma.
	jaundice,	Kanji, Decoction of	DTA,	SEM and PSD indicated
	anaemia and	Horse Gram,	SEM,	formation of nanoparticles
	liver	(Kulatha kwatha)	PSD,	in synthesized bhasma.
	disorder	Vishesh Shodhana	EDX, BET	Amrutikaran process was
		with Jyotishmati oil		found to be effective in
		Marana with Mixture		removal of arsenic in
		of Hartal, Gandhaka		purified silver bhasma
		and lime juice		
		Amritikaran with		
		lime extract		
Abhraka ⁶⁰	Mainly used	Method 1	XRD,	XRD revealed Monoclinic
It is prepared	in the	Shodhana with Cow	FTIR,	KMg3(Si3Al)O10(OH)2
from abhrak	treatment of	milk	SEM,	After amritikaran
or mica	anemia and		EDAX,	crystallite size increases
			TEM and	SEM/TEM revealed:

skin	Marana with Jaggery	DLS,	Particle range 50 nm to 1
diseases	+ juice of Ricinis	TGA/DTA	μm.
	communis	, BET	Few micron size (1 to 2
	Amritikaran with	,	micron) particles seen.
	cow ghee		Nano size particles
			clustered on bigger size
	Method 2		particles.
	Shodhana with Cow		particles.
	urine		Mothod 1 gauge type
			Method-1 - square type
	Marana with Cyprus		particles.
	rotundus+ calatropis		Method-2 and 3 : spherical
	procera		and rod-like particles .
	Amritikaran with		
	cow ghee		DLS revealed
			Method-1 - bimodal
	Method 3		distribution of particles
	Shodhana with		with ~ 50% of particles in
	Triphala decoction		nanorange (50-500 nm)
	Marana with		and remaining in micron
	Turmeric powder		range. micron size nature
	decoction + Borax		attributed to agglomeration
			of fused structure
	Amritikaran with		2. Method-2 and 3 show
	cow ghee		homogeneous distribution
			of particles with nearly
			90% of particles falling in
			the region of 50-500 nm
			Effective diameter of
			bhasmas by method-1 and
			method-2 ranges between
			500-1000 nm while that by
			method-3 is ~3000 nm

Naga ⁶¹	Used in the	Jarana Method:	XRD,	The specific surface area of
It is lead	treatment	Vishesh Shodhana	FTIR,	nano sized bhasmas ranges
based bhasma	odiabetes	with lime water	SEM,	from 5 to 16 m^2g^{-1}
	and skin	Jarana with Ash of	EDAX,	Bhasma prepared from
	diseases	Tamarindus indica	TEM and	jarana method shows less
		and ash of Ficus	DLS,	specific surface area (~5
		religosa	TGA/DTA	m^2g^{-1}) than other two
		Marana with Realgar	, BET	methods (pisti and
		and juice of Citrus		putapaka method).
		acida		The putapaka method
				shows maximum surface
		Pisti Method		area ~16.53 m ² g ⁻¹ .
		Vishesh Shodhana		The surface area is more in
		with Triphala		bhasmas prepared by
		decoction		samanya shodhana process
		Jarana amalgam of		than bhasma prepared
		mercury		without samanya shodhana
		Marana with Purified		process
		sulfur and juice of		
		Citrus acida		Jarana method without
				samanya shodhana process
		Putapaka method		~50% particles are falling
		Vishesh Shodhana		in the range of 750- 1250
		with Juice of Vitex		nm showing homogeneous
		nigundo		distribution of particle.
		Jarana stem of		Pisti method with samanya
		Adhatoda vesica		shodhana process ~ 50% of
		Marana with		particle are in the range of
		Decoction of		350-500 nm and that
		Adhatoda vesica		without samanya shodhana
				process ~ 70 % of particles
				are in the range of 1250-
				1500 nm.

				Putapaka method with samanya shodhana process ~75% of particles are in the range of 50- 750 nm while in putapaka method without samanya shodhana process ~ 60% of particles in the range 50-750 nm. High diameter of particles is due to agglomeration of nano particles. More diameter observed in bhasmas prepared without
47		a a 1		samanya shodhana process.
Tamra ⁴⁷	Ued in	Samanya Shodhana	NAA	Copper concentration was
It is copper	tumor,	with Sesamum oil,		found to vary after each
based bhasma	gland and	Buttermilk, Cow		stage of preparation and
	stomach	urine, Kanji,		final concentration was
	related	Horsegram decoction		found to be 59.79%
	diseases	Vishesh Shodhana		
		with Cow urine		
		Marana with Kajjali		
		and juice of citrusacida		

References:

- 1. S.C. Bhargaval and K.R. Reddy, Int. J. Ayurved. med., 2, 192, 2011.
- 2. D. Pal, C. K. Sahu, A. Haldar, J. Adv. Pharma. Res., 5(1) 4, 2014.
- 3. J.T. Acharya. S. Acharya, Sushruta Samhita, commented Chaukhambha Orientalia, Seventh edn., 75, 2002.
- 4. V. B. Dash, Alchemy and Metallic Medicines, Concept Publishing Co., 2001.

- 5. B.J. Ravishankar and V. J. Shukla, African J. trad. and compliment. and alt. medicines, 4(3),319,2007.
- 6. C. A.Kumar, J. Ayu. Integr. Med., 8(1), 55, 2017.
- P.G. Dileep Kumar, P. Nataraja Yadav, S. Gananadhamu, K.S. Nataraj, J. Drug Deliv.Therapeut.. 11(5):183, 2021.
- 8. J. Sharma, S. Rathore and H. Anitha, Int. J. Res. Trend. Innov., 7(12),4, 2022.
- 9. G.R. Chatwal and S.K. Anand, Himalaya publishing house, Ed.2002.
- 10. Transmission electron microscope (TEM), Encyclopedia Britannica., Inc.2008.
- 11. D. A. Skoog, F.J. Holler and S.R. Croach, Cenange India, Edn. 7., 2017.
- 12. U.A. Jadhao and R.K. Ingole, Int. J. Pharma., 5(10), 773, 2014,.
- 13. R.N. Chopra, S. Ghosh and A.T. Dutta, Ind. J. Med. Res., 22, 285, 1934.
- 14. R.N. Chopra, S. Ghosh and A.T. Dutta, Ind. J. Med. Res., 24, 257, 1936.
- 15. R.N. Chopra, S. Ghosh and A.T. Dutta, Ind. J. Med. Res., 24, 517, 1936.
- 16. R.N. Chopra, S. Ghosh and A.T. Dutta, Ind. J. Med. Res., 24, 1137, 1937,
- 17. R.N. Chopra, S. Ghosh and A.T. Dutta, Ind. J. Med. Res., 24,1141, 1937.
- 18. A. Kumar, A.G. Nair, A.V. Reddy and A.N. Garg, Biol. Trace Element Res., 1(3) 231, 2006.
- A. Kumar, A.G.C. Nair, A.V. R.Reddy and A.N. Garg, J. Radioanal. Nucl. Chem., 270 (1) 173, 2006.
- 20. R.R. Garg, N. Singh, P. N. Trehan, M.L. Garg, P. C. Mangal, F. Hennrich, H. Himmsen and H. Mommsen, Indian J. of Phys. Part B, 67(6), 581,1993.
- 21. S. M. Sondhi and G.K. Janani, Indian Drugs ,32, 125 ,1995.
- 22. S. M. Sondhi, V.K. Sharma and R.P. Verma, Indian Drugs., 33,67, 1996.
- 23. L.V. Krishnamurthy and R. T. Sane, Ind. Res. J. of Chem. and Environ., 5, 65, 2005.
- 24. B. Krishnamachary, A. Purushottam, B. Pemiah, S. Krishnaswamy, U. M. Krishnan, S. Sethuraman and R.K. Sekar, Int.J.Pharm. Pharmaceutic.Res.,4(2), 644, 2012.
- 25. J.K. Lalla, P.D. Hamrapurkar, P.G. Patil and H.M. Mamania, Indian Drugs., 39, 152, 2002.
- 26. A. Mitra, S. Chakraborty and B. Auddy, J. Ethnopharmacology, 80, 147, 2002.
- 27. P.K. Prajapati, P.K. Sarkar, S.V. Nayak, R.D. Joshi and B.S.Ravishankar, Ancient Sci. Life., 25, 1, 2006.
- 28. P. Kumari, Y. Yadav and K. C. Sharma, J. Tradit. Complement. Med., 5(6), 122, 2022.
- 29. A. Wijenayake, A. Pitawala , R. Bandara , C. Abayasekara, J. Ethnopharmacology., 155, 1001, 2004.
- 30. M. P. Wadekar, C.V. Rode, Y.N. Bendale, K.R. Patil, A. B. Gaikwad and A.A. Prabhune,

J. Pharm. Biomed. Anal., 39, 951, 2005.

- R. P. Gawate, V. A. Kilor and N. P. Sapkal, Int. J. Pharma. Pharmaceutic. Sci., 8(4), 327, 2016.
- 32. S. Nagaranjan, B. Pemiah , U.M. Krishnan , R.K. Sekar, S. Krishaswamy and S. Sethuraman , Int. J. of Pharm. and Pharmaceutic sci., 4(2), 69, 2012.
- 33. N. Pattanaik, A. V. Singh, R. S. Pandey, B. K. Singh, M. Kumar, S. K. Dixit and Y. B. Tripathi, Ind. J. of Clinical Biochem., 18 (2),181, 2003.
- 34. C.Y. Jagtap, P. Prajapati, B. Patgiri and V. J. Shukla, Ancient Sci. Life., 31(4), 164, 2012.
- 35. L. N. Gupta, N. Kumar and K. D. Yadav, Int. J. of Pharmaceut. Biol. Archives, 5(3), 74, 2014.
- N. Sonkar, A. Agrawak and C.B. Jha, Int. J. of Pharmaceutic. Res. and Biosci., 3(1), 229, 2014.
- 37. G. Pyrgiotakis, T.K. Bhomick, K. Finton, A.K. Suresh, S. G. Kanne, J.R. Bellare, and B.M. Moudgil, Biopolymer., 89 (6), 555, 2008.
- S.Vasanth, R.B. Bharathi, A. Mitra, S. Chakraborty and B. Auddy, J. Ethnopharmacology., 80, 147, 2002.
- 39. R. Dixit and G.C. Shivahare J. Ind. Chem. Society., 65, 47,1988.
- 40. P. Kar, S. Banerjee, A. Chhetri, A. Sen, J. Phytology., 13, 64, 2021.
- 41. T. S. Patil, A. A. Wele, Indo. Amer. J. Pharmaceutic. Sci., 5(1), 192, 2018.
- 42. A. N. Garg and A. Kumar J. ISAS, 2(1), 52, 2023.
- 43. A. Ashwini and B. R. Kerur, Asian J. Pharma. Clin. Res. 12(3), 545, 2019.
- 44. S. Pandit, T.K. Biswas and P.K. Debnath, J. Ethnopharmacology., 65, 149, 1999.
- 45. S. Buwa, S. Patil, P. H. Kulkarni and A. Kanase, Ind. J. Exp. Biol., 39(10),1022,2001.
- 46. S. pandit, T.K. Sur, U. Jana, D. Bhattacharyya, P. K. Debnath, Ind. J. Pharmacol., 32,378,2000.
- 47. S. Kantak, T. Nesari and N. S. Rajurkar, Proceeding of DAE-BRNS Fifth symposium on Nuclear Analytical Chemistry [NAC-V], Mumbai, India, pp.96, 2014.
- 48. T.K. Bhowmick, A. K. Suresh, S.G. Kane, A.C. Joshi and J. R. Bellare, J. Nanoparticle Res., 11, 655, 2009.
- 49. Y. Singh, Int. Edu. Res. J., 10(4), 38, 2024.
- 50. S. K. Singh, D. N. Gautam, M. Kumar, and S. B. Rai, Ind. J. Pharm. Sci., 72(1), 24, 2010.
- 51. C. L. Brown, G. Bushell, M. W. Whitehoouse, D.S. Agarwal, S. G. Tupe, K. M. Paknikar and E.R. Tiekink, Gold Bulletin., 40(3), 245, 2007.

- 52. D. Amalnerkar, Azadi ka Amrit Mahotsav ISAS Webinar Series: A few Excerpts, PP 149 ISAS Publication Edited by Nilima Rajurkar, 2022.
- 53. S. Kantak and N. Rajurkar J. ISAS, 1(4), 25, 2023
- 54. B. Kale and N.S. Rajurkar, J. ISAS., 1(3) 7, 77, 2023.
- 55. N. Rajurkar, B. Kale and S. Kantak, Int. J. Pharmaceutic. Biol. Archives., 6(3), 21,2015.
- 56. B. Kale and N. S. Rajurkar, Pharma Innov. J., 7(1), 119,2018.
- 57. B. Kale and N. S. Rajurkar, J. Ayu. Integr.Med., 10, 111, 2019.
- 'Synthesi and characterization of iron and silver bhasma', V. B. Rathod, M.Phil. thesis, Pune University, May 2013.
- 59. N.S. Rajurkar, V. Rathod and S. Kantak, Env. Observer 13,209,2013.
- 60. S. Kantak, N.S. Rajurkar, P. Adhyapak, J. Ayu. Integr.Med., 11 (3), 236, 2020.
- 61. S. Kantak and N. S. Rajurkar, J. Applicable. Chem., 6 (2), 291,2017.